मराठी

For the Following Differential Equation, Find a Particular Solution Satisfying the Given Condition:- D Y D X = Y Tan X , Y = 1 When X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} = y \tan x\]

\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]

Integrating both sides, we get

\[\int\frac{1}{y}dy = \int\tan x dx\]

\[ \Rightarrow \log y = \log \left| \sec x \right| + C . . . . . . . \left( 1 \right)\]

Now,

When `x = 0, y = 1`

\[ \therefore \log 1 = \log 1 + C\]

\[ \Rightarrow C = 0\]

Putting the value of `C` in (1), we get

\[\log y = \log \left| \sec x \right|\]

\[ \Rightarrow y = \sec x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 65.3 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×