मराठी

The solution of ddxdydx+y = ex is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of `x ("d"y)/("d"x) + y` = ex is ______.

पर्याय

  • y = `"e"^x/x + "k"/x`

  • y = xex + cx

  • y = xex + k

  • x = `"e"^y/y + "k"/y`

MCQ
रिकाम्या जागा भरा

उत्तर

The solution of `x ("d"y)/("d"x) + y` = ex is y = `"e"^x/x + "k"/x`.

Explanation:

The given differential equation is `x ("d"y)/("d"x) + y = "e"^x` 

⇒ `("d"y)/("d"x) + y/x = "e"^x/x`

Here P = `1/x` and Q = `"e"^x/x`

∴ Integrating factor I.F. = `"e"^(int 1/x "d"x)`

= `"e"^(log |x|)`

= x

So, the solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "k"`

⇒ `y xx x = int "e"^x/x xx x  "d"x + "k"`

⇒ `y xx x = int "e"^x  "d"x + "k"`

⇒ `y xx x = "e"^x + "k"`

∴ y = `"e"^x/x + "k"/x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 58 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Which of the following differential equations has y = x as one of its particular solution?


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of differential equation coty dx = xdy is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×