Advertisements
Advertisements
प्रश्न
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
पर्याय
x
logx
`1/x`
– x
उत्तर
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is `1/x`.
Explanation:
The given differential equation is `x ("d"y)/("d"x) - y = x^4 - 3x`
⇒ `("d"y)/("d"x) - y/x = x^3 - 3`
Here, P = `- 1/x` and Q = `x^3 - 3`
So, integrating factor = `"e"^(int Pdx)`
= `"e"^(int 1/x "d"x)`
= `"e"^(-logx)`
= `"e"^(log 1/x)`
= `1/x`.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
(x + y − 1) dy = (x + y) dx
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.