Advertisements
Advertisements
प्रश्न
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
उत्तर
\[\left( 2ax + x^2 \right)\frac{dy}{dx} = a^2 + 2ax \]
\[\frac{dy}{dx} = \frac{a^2 + 2ax}{2ax + x^2} = \frac{a\left( a + 2x \right)}{x\left( 2a + x \right)} \]
\[\text{Let }x = 2a \tan^2 \theta \Rightarrow dx = 4a \tan\theta \sec^2 \theta\ d \theta \]
\[\frac{dy}{dx} = \frac{a\left( a + 4a\ tan^2 \theta \right)}{2a \tan^2 \theta \left( 2a \right)\left( 1 + \tan^2 \theta \right)}\]
\[\int dy = \int\frac{a \left( 1 + 4 \tan^2 \theta \right)}{2 \tan^2 \theta \left( 2a \right) \left( \sec^2 \theta \right)}dx \]
\[\int dy = \int\frac{a\left( 1 + 4 \tan^2 \theta \right)}{2 \tan^2 \theta \left( 2a \right) \left( \sec^2 \theta \right)}\left( 4a \right)\tan\theta \sec^2 \theta\ d\theta \]
\[= \int\frac{a \left( 1 + 4 \tan^2 \theta \right)}{\tan\theta}d\theta \]
\[= a\int\left( \frac{1}{\tan\theta} + 4\tan\theta \right)d\theta \]
\[y = a\int\cot\theta + 4\ tan\theta\ d\theta \]
\[ y = a\left[ \log \sin\theta + 4 \left( - \log \cos\theta \right) \right] + c \]
\[ y = a\left[ \log\sin\theta - 4\log \cos\theta \right] + c \]
\[\text{As, }x = 2a \tan^2 \theta \Rightarrow \tan\theta = \sqrt{\frac{x}{2a}} \]
\[y = a \log \left( \frac{\sin\theta}{\cos^4 \theta} \right) + c \]
\[= a\log\left( \frac{\tan\theta}{\cos^3 \theta} \right) + c \]
\[= a\log \left( \sqrt{\frac{x}{2a}} \times \left( \sqrt{\frac{x + 2a}{2a}} \right)^3 \right) + c \]
\[y = a\log\left( \frac{x^\frac{1}{2} {(x + 2a)}^\frac{3}{2}}{4 a^2} \right) + c\]
\[y + C = \frac{a}{2} \left( \log x + 3\log\left( x + 2a \right) \right)\text{ where }C = c - a\log\left( 4 a^2 \right)\]
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x2 + 1) dy + (2y − 1) dx = 0
(x3 − 2y3) dx + 3x2 y dy = 0
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.