मराठी

Find the Particular Solution of the Differential Equation D Y D X = X ( 2 Log X + 1 ) Sin Y + Y Cos Y Given that Y = π 2 When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

उत्तर

The given differential equation is \[\frac{dy}{dx} = \frac{x\left( 2\log x + 1 \right)}{\text { sin }y + y\text { cos }y}\]

Separating the variables in equation (1), we get: \[\left( \sin y + y\cos y \right)dy = x\left( 2\log x + 1 \right)dx\]  ...(2)

Integrating both sides of equation (2), we have:

\[\int\left( \sin y + y\cos y \right)dy = \int x\left( 2\log x + 1 \right)dx\] ...(3)

Now, 

\[\int\sin y dy = - \cos y + C\]

\[\in ty\cos y dy = y\sin y + \cos y + C\]  (Using by parts)

∴ \[\int\left( \sin y + y\cos y \right)dy = - \cos y + y\sin y + \cos y + C_1 = y\sin y + C_1\]  ...(4)

\[\text { Let } I = \int\left( 2x\log x + x \right)dx\]                      (using by parts)

\[ = \int2 x\log x dx + \int x dx\]

\[ = 2\left[ \log x\left( \int x dx \right) - \int\left( \frac{d}{dx}\left( \log x \right) . \int x dx \right) dx \right] + \frac{x^2}{2} + C_2 \]

\[ = 2\left[ \log x \times \frac{x^2}{2} - \in t\frac{1}{x} \times \frac{x^2}{2}dx \right] + \frac{x^2}{2} + C_2 \]

\[ = 2\left[ \frac{x^2}{2}\log x - \frac{x^2}{4} \right] + \frac{x^2}{2} + C_2 \]

\[ = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C_2 \]

\[ = x^2 \log x + C_2 . . . \left( 5 \right) \]

Putting the values in equation (3), we get:

\[y\sin y = x^2 \log x + {C, \text { where } C=C}_2 {-C}_1\]          ...(6)

On putting y = \[\frac{\pi}{2}\] and x = 1 in equation (6), we get:

C = \[\frac{\pi}{2}\]

∴ The particular solution of the given differential equation is

\[y\sin y = x^2 \log x + \frac{\pi}{2}\] .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


cos (x + y) dy = dx


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×