Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
उत्तर
The given differential equation is \[\frac{dy}{dx} = \frac{x\left( 2\log x + 1 \right)}{\text { sin }y + y\text { cos }y}\]
Separating the variables in equation (1), we get: \[\left( \sin y + y\cos y \right)dy = x\left( 2\log x + 1 \right)dx\] ...(2)
Integrating both sides of equation (2), we have:
\[\int\left( \sin y + y\cos y \right)dy = \int x\left( 2\log x + 1 \right)dx\] ...(3)
Now,
\[\int\sin y dy = - \cos y + C\]
\[\in ty\cos y dy = y\sin y + \cos y + C\] (Using by parts)
∴ \[\int\left( \sin y + y\cos y \right)dy = - \cos y + y\sin y + \cos y + C_1 = y\sin y + C_1\] ...(4)
\[\text { Let } I = \int\left( 2x\log x + x \right)dx\] (using by parts)
\[ = \int2 x\log x dx + \int x dx\]
\[ = 2\left[ \log x\left( \int x dx \right) - \int\left( \frac{d}{dx}\left( \log x \right) . \int x dx \right) dx \right] + \frac{x^2}{2} + C_2 \]
\[ = 2\left[ \log x \times \frac{x^2}{2} - \in t\frac{1}{x} \times \frac{x^2}{2}dx \right] + \frac{x^2}{2} + C_2 \]
\[ = 2\left[ \frac{x^2}{2}\log x - \frac{x^2}{4} \right] + \frac{x^2}{2} + C_2 \]
\[ = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C_2 \]
\[ = x^2 \log x + C_2 . . . \left( 5 \right) \]
Putting the values in equation (3), we get:
\[y\sin y = x^2 \log x + {C, \text { where } C=C}_2 {-C}_1\] ...(6)
On putting y = \[\frac{\pi}{2}\] and x = 1 in equation (6), we get:
C = \[\frac{\pi}{2}\]
∴ The particular solution of the given differential equation is
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
If y = etan x+ (log x)tan x then find dy/dx
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
cos (x + y) dy = dx
(1 + y + x2 y) dx + (x + x3) dy = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as