Advertisements
Advertisements
प्रश्न
(1 + y + x2 y) dx + (x + x3) dy = 0
उत्तर
\[\left( 1 + y + x^2 y \right)dx + \left( x + x^3 \right)dy = 0\]
\[ \Rightarrow dx + y\left( 1 + x^2 \right)dx + x\left( 1 + x^2 \right)dy = 0\]
\[ \Rightarrow dx + \left( 1 + x^2 \right) \left[ ydx + xdy \right] = 0\]
\[ \Rightarrow \left( 1 + x^2 \right) \left[ ydx + xdy \right] = - dx\]
\[ \Rightarrow \left[ ydx + xdy \right] = - \frac{1}{\left( 1 + x^2 \right)}dx\]
\[ \Rightarrow \left[ ydx + xdy \right] = - \frac{dx}{\left( 1 + x^2 \right)}\]
On integrating both side we get,
\[\left( xy \right) = - \int\frac{1}{1 + x^2}dx\]
\[ \Rightarrow xy = - \tan^{- 1} x + c\]
\[ \Rightarrow xy + \tan^{- 1} x = c\]
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
x2 dy + (x2 − xy + y2) dx = 0
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the differential equation of all non-horizontal lines in a plane.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.