Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
उत्तर
`e^(x/y) (1- x/y) + (1 + e^(x/y)) dx/dy = 0`
`Put x = vy
`dx/dy = v + y "dv"/dy`
`:. e^v (1 - v) + (1 + e^v).(v + y "dv"/dy) = 0`
`v(1 + e^v) + y(1 + e^v). (dv)/dy = (v - 1)e^v`
`y(1 + e^v) (dv)/dy = e^v v - e^v - ve^v - v`
`y(1 + e^v) (dv)/(dy) = - (v + e^v)`
`(1 + e^v)/(-(v + e^v)) "dv"/dy = 1/y`
`-int (1 + e^v)/(v + e^v) dv = int 1/y dy`
`log c - log(v + e^v) = log y`
`c/(v + e^v) = y`
`y(v + e^v) = c`
`c = y(v + e^v)`
`c = y(x/y + e^(x"/"y))` ....(1)
when x = 0, y = 1
`c = 1(0 + e^o)`
c = 1
Put c = 1 in equation (1)
`1 = y(x/y + e^(x/y))`
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of differential equation coty dx = xdy is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`