Advertisements
Advertisements
प्रश्न
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
उत्तर
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is exdx.
Explanation:
ey = ex + c from given equation, we have eydy = exdx.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The number of arbitrary constants in the general solution of differential equation of fourth order is
cos (x + y) dy = dx
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.