Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
उत्तर
`(1+x^2)dy/dx=(e^(mtan^-1 x)-y)`
`=>dy/dx=(e^(mtav^-1 x))/(1+x^2)-y/(1+x^2)`
`=>dy/dx+y/(1+x^2)=e^(m tan^-1 x)/(1+x^2)`
`P=1/(1+x^2), Q=e^(m tan^-1 x)/(1+x^2)`
`I.F=e^(intPdx)`
`=e^(int(1/(1+x^2))dx)`
`=e^(tan^-1 x)`
Thus the solution is
`ye^(intPdx)=intQe^(intPdx)dx`
`=>yxxe^(tan^-1 x)=inte^(m tan^-1 x)/(1+x^2) .e^(tan^-1 x)dx`
`=>yxxe^(tan^-1 x)=inte^((m+1) tan^-1 x)/(1+x^2)dx ...............(i)`
`inte^((m+1) tan^-1 x)/(1+x^2)dx.............(ii)`
`Let (m+1)tan^-1 x = z`
`(m+1)/(1+x^2)dx=dz`
`dx/(1+x^2)=(dz)/(m+1)`
Substituting in (ii),
`1/(m+1)inte^z dz`
`=e^z/(m+1)`
`=e^((m+1)tan^-1 x)`
Substituting in (i),
`=>y xx e^(tan^-1 x)=e^((m+1)tan^-1 x)/(m+1)+C..........(iii)`
Putting y=1 and x=1, in the above equation,
`=>yxxe^(tan^-1 1)=e^((m+1)tan^-1 x)/(m+1)+C`
`=>1 xx e^(pi/4) = e^((m+1)tan^-1 pi/4)/(m+1)+C`
`=>C= e^((m+1)tan^-1 pi/4)/(m+1)- e^(pi/4)`
Particular solution of the D.E. is `yxxe^(tan^-1x)=e^((m+1)tan^-1 x)/(m+1)+e^((m+1)tan^-1 pi/4)/(m+1)- e^(pi/4)`
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
(x3 − 2y3) dx + 3x2 y dy = 0
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.