मराठी

Find the Equation of a Curve Passing Through the Point (0, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.

बेरीज

उत्तर

According to the question,

\[\frac{dy}{dx} = x + xy\]

\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]

\[ \Rightarrow \frac{1}{y + 1}dy = x dx\]

Integrating both sides, we get

\[\int\frac{1}{y + 1}dy = \int x dx\]

\[ \Rightarrow \log \left| y + 1 \right| = \frac{x^2}{2} + \log C\]

\[ \Rightarrow \log \left| \frac{y + 1}{C} \right| = \frac{x^2}{2}\]

\[ \Rightarrow y + 1 = C e^\frac{x^2}{2} \]

Since, the curve passes through (0, 1)

It satisfies the equation of the curve.

\[ \therefore 1 + 1 = C e^0 \]

\[ \Rightarrow C = 2\]

Puting the value of `C` in the equation of the curve, We get

\[ y + 1 = 2 e^\frac{x^2}{2} \]

\[ \Rightarrow y = - 1 + 2 e^\frac{x^2}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 73 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×