Advertisements
Advertisements
प्रश्न
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
उत्तर
According to the question,
\[\frac{dy}{dx} = x + xy\]
\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]
\[ \Rightarrow \frac{1}{y + 1}dy = x dx\]
Integrating both sides, we get
\[\int\frac{1}{y + 1}dy = \int x dx\]
\[ \Rightarrow \log \left| y + 1 \right| = \frac{x^2}{2} + \log C\]
\[ \Rightarrow \log \left| \frac{y + 1}{C} \right| = \frac{x^2}{2}\]
\[ \Rightarrow y + 1 = C e^\frac{x^2}{2} \]
Since, the curve passes through (0, 1)
It satisfies the equation of the curve.
\[ \therefore 1 + 1 = C e^0 \]
\[ \Rightarrow C = 2\]
Puting the value of `C` in the equation of the curve, We get
\[ y + 1 = 2 e^\frac{x^2}{2} \]
\[ \Rightarrow y = - 1 + 2 e^\frac{x^2}{2}\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.