Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
पर्याय
\[y = \frac{1}{x^2}\]
\[x = \frac{1}{y^2}\]
\[x = \frac{1}{y}\]
\[y = \frac{1}{x}\]
उत्तर
\[y = \frac{1}{x^2}\]
We have,
\[\frac{dy}{dx} + \frac{2y}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{- 1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = - \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} + \log x = \log C\]
\[ \Rightarrow \log\left( \sqrt{y}x \right) = \log C\]
\[ \Rightarrow \sqrt{y}x = C . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ satisfies }y\left( 1 \right) = 1,\text{ we get }\]
\[1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y}x = 1\]
\[ \Rightarrow y = \frac{1}{x^2}\]
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Solve the differential equation `dy/dx -y =e^x`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
If y = etan x+ (log x)tan x then find dy/dx
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.