मराठी

The Solution of the Differential Equation D Y D X − K Y = 0 , Y ( 0 ) = 1 Approaches to Zero When X → ∞, If - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if

पर्याय

  • k = 0

  • k > 0

  • k < 0

  • none of these

MCQ

उत्तर

k < 0

 

We have,

\[ \Rightarrow \frac{dy}{dx} - ky = 0\]

\[ \Rightarrow \frac{dy}{dx} = ky\]

\[ \Rightarrow \frac{1}{y}dy = k dx\]

Integrating both sides, we get

\[\int\frac{1}{y}dy = k\int dx\]

\[ \Rightarrow \log\left| y \right| = kx + C . . . . . \left( 1 \right)\]

Now,

\[y\left( 0 \right) = 1\]

\[ \therefore C = 0\]

\[\text{Putting }C = 0\text{ in }\left( 1 \right),\text{ we get }\]

\[\log\left| y \right| = kx\]

\[ \Rightarrow e^{kx} = y\]

According to the question,

\[ e^{k \infty} = 0\]

\[\text{ Since }e^{- \infty} = 0\]

\[ \therefore k < 0.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 33 | पृष्ठ १४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


If y = etan x+ (log x)tan x then find dy/dx


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 5y = \cos 4x\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×