Advertisements
Advertisements
प्रश्न
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
पर्याय
x ey + x2 = C
x ey + y2 = C
y ex + x2 = C
y ey + x2 = C
उत्तर
y ex + x2 = C
We have,
ex dy + (yex + 2x) dx = 0
\[\text{ Dividing both sides by }e^x dx, \text{ we get }\]
\[\frac{dy}{dx} + \left( y + \frac{2x}{e^x} \right) = 0\]
\[ \Rightarrow \frac{dy}{dx} + y = - \frac{2x}{e^x}\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = 1\]
\[Q = - \frac{2x}{e^x}\]
Now,
\[I . F . = e^{\int dx = e^x} \]
Solution is given by,
\[y \times I . F . = \int\left( Q \times I . F . \right) dx + C\]
\[ \Rightarrow y e^x = - \int e^x \times \frac{2x}{e^x}dx + C\]
\[ \Rightarrow y e^x = - 2\int x dx + C\]
\[ \Rightarrow y e^x = - x^2 + C\]
\[ \Rightarrow y e^x + x^2 = C \]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
If y = etan x+ (log x)tan x then find dy/dx
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.