मराठी

The Solution of the Differential Equation D Y D X = Y X + ϕ ( Y X ) ϕ ′ ( Y X ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is

पर्याय

  • \[\phi\left( \frac{y}{x} \right) = kx\]

  • \[x\phi\left( \frac{y}{x} \right) = k\]

  • \[\phi\left( \frac{y}{x} \right) = ky\]

  • \[y\phi\left( \frac{y}{x} \right) = k\]

MCQ

उत्तर

\[\phi\left( \frac{y}{x} \right) = kx\]

 

We have,

\[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\]

Let y = vx

\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[ \therefore v + x\frac{dv}{dx} = v + \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{\phi\left( v \right)}{\phi'\left( v \right)}\]

\[ \Rightarrow \frac{\phi\left( v \right)}{\phi'\left( v \right)}dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{\phi'\left( v \right)}{\phi\left( v \right)}dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| \phi\left( v \right) \right| = \log \left| x \right| + \log k\]

\[ \Rightarrow \log \left| \phi\left( \frac{y}{x} \right) \right| - \log \left| x \right| = \log k\]

\[ \Rightarrow \log\left| \frac{\phi\left( \frac{y}{x} \right)}{x} \right| = \log k\]

\[ \Rightarrow \frac{\phi\left( \frac{y}{x} \right)}{x} = k\]

\[ \Rightarrow \phi\left( \frac{y}{x} \right) = kx\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 25 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×