Advertisements
Advertisements
प्रश्न
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
पर्याय
x (y + cos x) = sin x + C
x (y − cos x) = sin x + C
x (y + cos x) = cos x + C
none of these
उत्तर
x (y + cos x) = sin x + C
We have,
\[\frac{dy}{dx} + \frac{y}{x} = \sin x\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \sin x . . . . . \left( 1 \right)\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x} \]
\[Q = \sin x\]
Now,
\[I . F . = e^{\int\frac{1}{x}dx} = e^{log\left| x \right|} \]
\[ = x\]
\[\text{ Therefore, integration of }\left( 1 \right) \text{ is given by }\]
\[y \times I . F . = \int x^2 \times I . F . dx + C\]
\[ \Rightarrow yx = x\int\sin x dx - \int\left[ \frac{d}{dx}\left( x \right)\int\sin x dx \right]dx + C\]
\[ \Rightarrow yx = - x \cos x + \int\cos x dx + C\]
\[ \Rightarrow yx + x \cos x = \sin x + C\]
\[ \Rightarrow x\left( y + \cos x \right) = \sin x + C\]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.