Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} + 5y = \cos 4x\]
उत्तर
We have,
\[\frac{dy}{dx} + 5y = \cos 4x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 15\text{ and }Q = \cos 4x\]
\[ \therefore I . F . = e^{\int P\ dx }\]
\[ = e^{\int 5dx} \]
\[ = e^{5x} \]
\[\text{Multiplying both sides of (1) by }I.F. = e^{5x},\text{ we get}\]
\[e^{5x} \left( \frac{dy}{dx} + 5y \right) = e^{5x} \cos 4x \]
\[\Rightarrow e^{5x} \frac{dy}{dx} + 5 e^{5x} y = e^{5x} \cos 4x\]
Integrating both sides with respect to `x`, we get
\[y e^{5x} = \int e^{5x} \cos 4x dx + C\]
\[ \Rightarrow y e^{5x} = I + C . . . . . \left( 2 \right)\]
Where,
\[I = \int e^{5x} \cos 4x dx . . . . . \left( 3 \right)\]
\[ \Rightarrow I = e^{5x} \int\cos 4x dx - \int\left[ \frac{d e^{5x}}{dx}\int\cos 4x dx \right]dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\int e^{5x} \sin 4x dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ e^{5x} \int\sin 4x dx - \int\left( \frac{d e^{5x}}{dx}\int\sin 4x dx \right)dx \right]\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ - \frac{e^{5x} \cos 4x}{4} + \frac{5}{4}\int e^{5x} \cos 4x dx \right]\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}\int e^{5x} \cos 4x dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}I ............\left[\text{From (3)} \right]\]
\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16}\]
\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x}}{16}\left( 4\sin 4x + 5\cos 4x \right)\]
\[ \Rightarrow I = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) . . . . . . . . \left( 4 \right)\]
From (2) and (4) we get
\[ \Rightarrow y e^{5x} = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) + C\]
\[ \Rightarrow y = \frac{4}{41}\left( \sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x} \]
\[\text{Hence, }y = \frac{4}{41}\left(\sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.