Advertisements
Advertisements
प्रश्न
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
पर्याय
xy = – ex
xy = – e-x
xy = – 1
y = 2ex – 1
उत्तर
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by y = 2ex – 1.
Explanation:
The given differential equation is `("d"y)/("d"x) - y` = 1
Here, P = –1, Q = 1
∴ Integrating factor, I.F. = `"e"^(intPdx)`
= `"e"^(int -1"d"x)`
= `"e"^-x`
So, the solution is `y xx "I"."F". = int "Q" ."I"."F". "d"x + "c"`
⇒ `y xx "e"^-x = int 1."e"^-x "d"x + "c"`
⇒ `y * "e"^-x = -"e"^-x + "c"`
Put x = 0, y = 1
⇒ `1. "e"^0 = - "e"^0 + "c"`
⇒ 1 = `-1 + "c"`
∴ c = 2
So the equation is `y * "e"^-x = -"e"^-x + 2`
⇒ y = `-1 + 2"e"^x`
= `2"e"^x - 1`.
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} + y = 4x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`