Advertisements
Advertisements
प्रश्न
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
उत्तर
We have,
\[y dx + x \log \left( \frac{y}{x} \right)dy - 2x dy = 0\]
\[ \Rightarrow x \log \left( \frac{y}{x} \right)dy - 2x dy = - y dx\]
\[ \Rightarrow \left[ \log \left( \frac{y}{x} \right) - 2 \right]x dy = - y dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{\left[ \log \left( \frac{y}{x} \right) - 2 \right]x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}}{2 - \log \left( \frac{y}{x} \right)} . . . . . . . . \left( 1 \right)\]
Clearly this is a homogenous equation,
Putting y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ in (1) we get}\]
\[v + x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log \left( v \right)}{2 - \log \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v + v \log \left( v \right)}{2 - \log \left( v \right)}\]
\[ \Rightarrow \frac{2 - \log \left( v \right)}{- v + v \log \left( v \right)}dv = \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 2}{v \log \left( v \right) - v}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 1 - 1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 1}{v \left[ \log \left( v \right) - 1 \right]}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{v}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
Integrating both sides we get
\[\int\frac{1}{v}dv - \int\frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| - I = - \log \left| x \right| - \log C . . . . . . . . \left( 2 \right)\]
Where,
\[I = \int\frac{1}{v \left[ \log \left| \left( v \right) \right| - 1 \right]}dv\]
Puting log v = t
\[\frac{1}{v}dv = dt\]
\[ \therefore I = \int\frac{1}{t - 1}dt\]
\[ \Rightarrow I = \log \left| t - 1 \right|\]
\[ \Rightarrow I = \log \left| \log \left| v \right| - 1 \right| . . . . . \left( 3 \right)\]
From (2) and (3) we get
\[\log \left| v \right| - \log \left| \log \left| v \right| - 1 \right| = - \log \left| x \right| - \log C\]
\[ \Rightarrow \log \left| \frac{v}{\log \left| v \right| - 1} \right| = - \log \left| Cx \right|\]
\[ \Rightarrow \frac{v}{\log \left| v \right| - 1} = \frac{1}{Cx}\]
\[ \Rightarrow \log \left| v \right| - 1 = vCx\]
\[ \Rightarrow \log \left| \frac{y}{x} \right| - 1 = Cy\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the differential equation of all non-horizontal lines in a plane.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.