Advertisements
Advertisements
Question
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solution
We have,
\[y dx + x \log \left( \frac{y}{x} \right)dy - 2x dy = 0\]
\[ \Rightarrow x \log \left( \frac{y}{x} \right)dy - 2x dy = - y dx\]
\[ \Rightarrow \left[ \log \left( \frac{y}{x} \right) - 2 \right]x dy = - y dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{\left[ \log \left( \frac{y}{x} \right) - 2 \right]x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}}{2 - \log \left( \frac{y}{x} \right)} . . . . . . . . \left( 1 \right)\]
Clearly this is a homogenous equation,
Putting y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ in (1) we get}\]
\[v + x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log \left( v \right)}{2 - \log \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v + v \log \left( v \right)}{2 - \log \left( v \right)}\]
\[ \Rightarrow \frac{2 - \log \left( v \right)}{- v + v \log \left( v \right)}dv = \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 2}{v \log \left( v \right) - v}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 1 - 1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{\log \left( v \right) - 1}{v \left[ \log \left( v \right) - 1 \right]}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{v}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]
Integrating both sides we get
\[\int\frac{1}{v}dv - \int\frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| - I = - \log \left| x \right| - \log C . . . . . . . . \left( 2 \right)\]
Where,
\[I = \int\frac{1}{v \left[ \log \left| \left( v \right) \right| - 1 \right]}dv\]
Puting log v = t
\[\frac{1}{v}dv = dt\]
\[ \therefore I = \int\frac{1}{t - 1}dt\]
\[ \Rightarrow I = \log \left| t - 1 \right|\]
\[ \Rightarrow I = \log \left| \log \left| v \right| - 1 \right| . . . . . \left( 3 \right)\]
From (2) and (3) we get
\[\log \left| v \right| - \log \left| \log \left| v \right| - 1 \right| = - \log \left| x \right| - \log C\]
\[ \Rightarrow \log \left| \frac{v}{\log \left| v \right| - 1} \right| = - \log \left| Cx \right|\]
\[ \Rightarrow \frac{v}{\log \left| v \right| - 1} = \frac{1}{Cx}\]
\[ \Rightarrow \log \left| v \right| - 1 = vCx\]
\[ \Rightarrow \log \left| \frac{y}{x} \right| - 1 = Cy\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
(x + y − 1) dy = (x + y) dx
x2 dy + (x2 − xy + y2) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`