English

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: y = Ax : xy′ = y (x ≠ 0) - Mathematics

Advertisements
Advertisements

Question

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)

Sum

Solution

We have, y = Ax                 ...(1)

Differentiating (1) w.r.t.x, we get,

y' = A                         ...(2)

Dividing (2) by (1), we get

`(y')/y = 1/x`

⇒ xy' = y

Hence, y = Ax is a solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.2 [Page 385]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.2 | Q 5 | Page 385

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The number of arbitrary constants in the general solution of differential equation of fourth order is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Which of the following differential equations has `y = x` as one of its particular solution?


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×