Advertisements
Advertisements
Question
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Solution
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is y = `1/4 x^2 + "c" . x^-2`.
Explanation:
The given differential equation is `x(dy)/("d"x) + 2y = x^2`
⇒ `("d"y)/("d"x) + 2/x y` = x.
Since, it is linear differential equation
∴ P = `2/x` and Q = x
Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int 2/x "d"x)`
= `"e"^(2logx)`
= `"e"^(log x^2)`
= x2
∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y . x^2 = int x . x^2 "d"x + "c"`
⇒ `y . x^2 = int x^3 "d"x + "c"`
⇒ `y . x^2 = 1/4 x^4 + "c"`
⇒ y = `1/4 x^2 + "c" . x^-2`
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?