Advertisements
Advertisements
Question
x (e2y − 1) dy + (x2 − 1) ey dx = 0
Solution
We have,
\[x\left( e^{2y} - 1 \right)dy + \left( x^2 - 1 \right) e^y dx = 0\]
\[ \Rightarrow x\left( e^{2y} - 1 \right)dy = \left( 1 - x^2 \right) e^y dx\]
\[ \Rightarrow \left( \frac{e^{2y} - 1}{e^y} \right)dy = \left( \frac{1 - x^2}{x} \right)dx\]
\[ \Rightarrow \left( e^y - e^{- y} \right)dy = \left( \frac{1}{x} - x \right)dx\]
Integrating both sides, we get
\[\int\left( e^y - e^{- y} \right)dy = \int\left( \frac{1}{x} - x \right)dx\]
\[ \Rightarrow e^y + e^{- y} = \log \left| x \right| - \frac{1}{2} x^2 + C\]
\[ \Rightarrow e^y + e^{- y} - \log \left| x \right| + \frac{1}{2} x^2 = C\]
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the differential equation of all non-horizontal lines in a plane.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.