English

Solve the Following Differential Equation:- D Y D X + 2 Y = Sin X - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]

Sum

Solution

We have,

\[\frac{dy}{dx} + 2y = \sin x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = 2 \]

\[Q = \sin x\]

Now,

\[I . F . = e^{2\int dx} = e^{2x} \]

Solution is given by,

\[y \times I . F . = \int\sin x \times I . F . dx + C\]

\[ \Rightarrow y e^{2x} = I + C . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = \sin x\int e^{2x} dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{2}\int\cos x e^{2x} dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{2}\cos x\int e^{2x} dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( \cos x \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{4}\cos x e^{2x} - \frac{1}{4}\int\left[ \sin x e^{2x} \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{4}\cos x e^{2x} - \frac{1}{4}I ............\left[\text{Using (2)} \right]\]

\[ \Rightarrow I + \frac{1}{4}I = \frac{1}{2}\sin x e^{2x} - \frac{1}{4}\cos x e^{2x} \]

\[ \Rightarrow \frac{5}{4}I = \frac{1}{4}\left( 2\sin x e^{2x} - \cos x e^{2x} \right)\]

\[ \Rightarrow I = \frac{1}{5}\left( 2\sin x - \cos x \right) e^{2x} . . . . . \left( 3 \right)\]

Therefore from (1) and (3), we get

\[ \therefore y e^{2x} = \frac{1}{5}\left( 2\sin x - \cos x \right) e^{2x} + C\]

\[ \Rightarrow y = \frac{1}{5}\left( 2 \sin x - \cos x \right) + C e^{- 2x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.06 | Page 147

RELATED QUESTIONS

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

(x3 − 2y3) dx + 3x2 y dy = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


tan–1x + tan–1y = c is the general solution of the differential equation ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×