Advertisements
Advertisements
Question
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solution
Differential equations
`dy/dx + (y^2 + y + 1)/(x^2 + x + 1)` = 0
or `dy/(y^2 + y + 1) + dx/(x^2 + x + 1) = 0`
and `dy/(y^2 + y + 1/4 + 3/4) + dx/(x^1 + x + 1/4 + 3/4) = 0`
or `dy/((y + 1/2)^2 + 3/4) + dx/((x + 1/2)^2 + 3/4)` = 0
On integrating,
`int dy/((y + 1/2)^2 + 3/4) + int dx/((x + 1/2)^2 + 3/4)` = 0
⇒ `2/sqrt3 tan^-1 ((y + 1/2)/(sqrt3/2)) + 2/sqrt3 tan^-1 ((x + 1/2)/(sqrt3/2))` = C
⇒ `2/sqrt3 tan^-1 ((2y + 1)/sqrt3) + 2/sqrt3 tan^-1 ((2x + 1)/sqrt3)` = C
⇒`2/sqrt3 tan^-1 [((2y + 1)/sqrt3 + (2x + 1)/sqrt3)/(1 - (2y + 1)/sqrt3 xx (2x + 1)/sqrt3)]` = C
⇒ `2/sqrt3 tan^-1 [(sqrt3 (2x + 2y + 2))/(3 - (2y + 1)(2x + 1))]` = C
⇒ `tan^-1 [(sqrt3(2x + 2y + 2))/(2 - 2x - 2y - 4xy)] = sqrt3/2`C
`= tan^-1 sqrt3 A`
Where C = `2/sqrt3 tan^-1 (sqrt3 A)`
`=> (2sqrt3 (x + y + 1))/(2 (1 - x - y - 2xy)) = sqrt3A`
∴ The required solution is
x + y + 1 = A(1 – x – y – 2xy)
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.