English

Find the general solution of dydxadydx+ay = emx - Mathematics

Advertisements
Advertisements

Question

Find the general solution of `"dy"/"dx" + "a"y` = emx 

Sum

Solution

Given equation is `"dy"/"dx" + "a"y` = emx 

Here, P = a and Q = emx 

∴ I.F. = `"e"^(int Pdx)`

= `"e"^(int a .dx)`

= eax.

Solution of equation is `y xx "I"."F" = int "Q"  "I"."F"  "d"x + "c"`

⇒ `y."e"^("a"x) = int "e"^"mx" . "e"^("a"x)  "d"x + "c"`

⇒ `y . "e"^("a"x) = int "e"^(("m" + "a")x)  "d"x + "c"`

⇒ `y . "e"^("a"x) = "e"^(("m" + "a")x)/(("m" + "a")) + "c"`

⇒ y = `"e"^(("m" + "a")x)/(("m" + "a")) . "e"^(-"a"x) + "c"."e"^(-"a"x)`

 ∴ y = `"e"^("m"x)/(("m" + "a")) + "c" . "e"^(-"a"x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 193]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 6 | Page 193

RELATED QUESTIONS

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×