Advertisements
Advertisements
Question
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solution
Given equation is `"dy"/"dx" + "a"y` = emx
Here, P = a and Q = emx
∴ I.F. = `"e"^(int Pdx)`
= `"e"^(int a .dx)`
= eax.
Solution of equation is `y xx "I"."F" = int "Q" "I"."F" "d"x + "c"`
⇒ `y."e"^("a"x) = int "e"^"mx" . "e"^("a"x) "d"x + "c"`
⇒ `y . "e"^("a"x) = int "e"^(("m" + "a")x) "d"x + "c"`
⇒ `y . "e"^("a"x) = "e"^(("m" + "a")x)/(("m" + "a")) + "c"`
⇒ y = `"e"^(("m" + "a")x)/(("m" + "a")) . "e"^(-"a"x) + "c"."e"^(-"a"x)`
∴ y = `"e"^("m"x)/(("m" + "a")) + "c" . "e"^(-"a"x)`
APPEARS IN
RELATED QUESTIONS
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.