English

The Solution of the Differential Equation D Y D X + 2 Y X = 0 with Y(1) = 1 is Given by - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by

Options

  • \[y = \frac{1}{x^2}\]

  • \[x = \frac{1}{y^2}\]

  • \[x = \frac{1}{y}\]

  • \[y = \frac{1}{x}\]

MCQ

Solution

\[y = \frac{1}{x^2}\]

 

We have,
\[\frac{dy}{dx} + \frac{2y}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{- 1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = - \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} + \log x = \log C\]
\[ \Rightarrow \log\left( \sqrt{y}x \right) = \log C\]
\[ \Rightarrow \sqrt{y}x = C . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ satisfies }y\left( 1 \right) = 1,\text{ we get }\]
\[1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y}x = 1\]
\[ \Rightarrow y = \frac{1}{x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 140]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 11 | Page 140

RELATED QUESTIONS

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


(x2 + 1) dy + (2y − 1) dx = 0


(x3 − 2y3) dx + 3x2 y dy = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solution of differential equation xdy – ydx = 0 represents : ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Which of the following differential equations has `y = x` as one of its particular solution?


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×