Advertisements
Advertisements
Question
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solution
We have,
\[\cos \left( \frac{dy}{dx} \right) = a\]
\[ \Rightarrow \frac{dy}{dx} = \cos^{- 1} a\]
\[ \Rightarrow dy = \cos^{- 1} a dx\]
Integrating both sides, we get
\[\int dy = \int \cos^{- 1} a dx\]
\[ \Rightarrow y = x \cos^{- 1} a + C\]
Now,
When `x = 0, y = 1`
\[ \therefore 1 = 0 + C\]
\[ \Rightarrow C = 1\]
Putting the value of `C` in (1), we get
\[y = x \cos^{- 1} a + 1\]
\[ \Rightarrow \cos\left( \frac{y - 1}{x} \right) = a\]
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
(1 + y + x2 y) dx + (x + x3) dy = 0
\[\frac{dy}{dx} + 5y = \cos 4x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of differential equation coty dx = xdy is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.