Advertisements
Advertisements
Question
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Options
`x/"e"^x`
`"e"^x/x`
xex
ex
Solution
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is `"e"^x/x`.
Explanation:
The given differential equation is `("d"y)/("d"x) + y = (1 + y)/x`
⇒ `("d"y)/("d"x) = (1 + y)/x - y`
⇒ `("d"y)/("d"x) = 1/x + y((1 - x))/x`
⇒ `("d"y)/("d"x) - ((1 - x)/x)y = 1/x`
Here, P = `-((1 - x)/x)` and Q = `1/x`
∴ Integrating factor I.F = `"e"^(intPdx)`
= `"e"^(int (x - 1)/x "d"x)`
= `"e"^(int(1 - 1/x)"d"x)`
= `"e"^((x - logx))`
= `"e"^x . "e"^(-logx)`
= `"e"^x . "e"^(log 1/x)`
= `"e"^x . 1/x`
APPEARS IN
RELATED QUESTIONS
Find the differential equation representing the curve y = cx + c2.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.