Advertisements
Advertisements
Question
cos (x + y) dy = dx
Solution
We have,
\[\cos \left( x + y \right)dy = dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x + y \right)} . . . . . \left( 1 \right)\]
Let `x + y = v`
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
Therefore, (1) becomes
\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v + 1}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\cos v + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\cos v + 1}dv = \int dx\]
\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{1 - \cos^2 v}dv = \int dx\]
\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{\sin^2 v}dv = \int dx\]
\[ \Rightarrow \int\left( \cot v\ cosec\ v - co t^2 v \right)dv = \int dx\]
\[ \Rightarrow \int\left( \cot v\ cosec\ v - {cosec}^2 v + 1 \right)dv = \int dx\]
\[ \Rightarrow - cosec\ v + \cot v + v = x + C\]
\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + x + y = x + C\]
\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + y = C\]
\[ \Rightarrow cosec \left( x + y \right) - \cot \left( x + y \right) = y - C\]
\[ \Rightarrow \frac{1 - \cos \left( x + y \right)}{\sin \left( x + y \right)} = y - C\]
\[ \Rightarrow \frac{2 \sin^2 \left( \frac{x + y}{2} \right)}{2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x + y}{2} \right)} = y - C\]
\[ \Rightarrow \frac{\sin \left( \frac{x + y}{2} \right)}{\cos \left( x + y \right)} = y - C\]
\[ \Rightarrow \tan\left( \frac{x + y}{2} \right) = y - C\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
\[\frac{dy}{dx} - y \tan x = e^x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.