English

D Y D X + Y X = Y 2 X 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]

Sum

Solution

We have,

\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]

\[ \Rightarrow \frac{dy}{dx} = \left( \frac{y}{x} \right)^2 - \frac{y}{x}\]

Putting `y = vx,` we get

\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[ \therefore v + x\frac{dv}{dx} = v^2 - v\]

\[ \Rightarrow x\frac{dv}{dx} = v^2 - 2v\]

\[ \Rightarrow \frac{1}{v^2 - 2v} dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{1}{v^2 - 2v} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{v^2 - 2v + 1 - 1} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{\left( v - 1 \right)^2 - \left( 1 \right)^2} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \frac{1}{2}\log \left| \frac{v - 1 - 1}{v - 1 + 1} \right| = \log x + \log C\]

\[ \Rightarrow \log \left| \left( \frac{v - 2}{v} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \log \left| \left( \frac{\frac{y}{x} - 2}{\frac{y}{x}} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \log \left| \left( \frac{y - 2x}{y} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \left( \frac{y - 2x}{y} \right)^\frac{1}{2} = Cx\]

\[ \Rightarrow \frac{y - 2x}{y} = C^2 x^2 \]

\[ \Rightarrow y - 2x = k x^2 y,\text{ where }k = C^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 37 | Page 146

RELATED QUESTIONS

Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(x2 + 1) dy + (2y − 1) dx = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


(x3 − 2y3) dx + 3x2 y dy = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×