Advertisements
Advertisements
Question
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
Solution
We have,
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{y}{x} \right)^2 - \frac{y}{x}\]
Putting `y = vx,` we get
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = v^2 - v\]
\[ \Rightarrow x\frac{dv}{dx} = v^2 - 2v\]
\[ \Rightarrow \frac{1}{v^2 - 2v} dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{v^2 - 2v} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v^2 - 2v + 1 - 1} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{\left( v - 1 \right)^2 - \left( 1 \right)^2} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| \frac{v - 1 - 1}{v - 1 + 1} \right| = \log x + \log C\]
\[ \Rightarrow \log \left| \left( \frac{v - 2}{v} \right)^\frac{1}{2} \right| = \log Cx\]
\[ \Rightarrow \log \left| \left( \frac{\frac{y}{x} - 2}{\frac{y}{x}} \right)^\frac{1}{2} \right| = \log Cx\]
\[ \Rightarrow \log \left| \left( \frac{y - 2x}{y} \right)^\frac{1}{2} \right| = \log Cx\]
\[ \Rightarrow \left( \frac{y - 2x}{y} \right)^\frac{1}{2} = Cx\]
\[ \Rightarrow \frac{y - 2x}{y} = C^2 x^2 \]
\[ \Rightarrow y - 2x = k x^2 y,\text{ where }k = C^2\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(x2 + 1) dy + (2y − 1) dx = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
(x3 − 2y3) dx + 3x2 y dy = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`