English

The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______. - Mathematics

Advertisements
Advertisements

Question

The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.

Fill in the Blanks

Solution

The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is Zero; any particular solution of a differential equation has no arbitrary constant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 22. (iii) | Page 189

RELATED QUESTIONS

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The number of arbitrary constants in the general solution of differential equation of fourth order is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


\[\frac{dy}{dx} + y = 4x\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×