English

If M and N Are the Order and Degree of the Differential Equation ( Y 2 ) 5 + 4 ( Y 2 ) 3 Y 3 + Y 3 = X 2 − 1 , Then - Mathematics

Advertisements
Advertisements

Question

If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then

Options

  • m = 3, n = 3

  • m = 3, n = 2

  • m = 3, n = 5

  • m = 3, n = 1

MCQ

Solution

m = 3, n = 2
 
We have,
\[ \left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\]
\[ \Rightarrow y_3 \left( y_2 \right)^5 + 4 \left( y_2 \right)^3 + \left( y_3 \right)^2 = y_3 \left( x^2 - 1 \right)\]
\[\text{ The highest order derivative is }y_3\text{ and its highest exponent in this equation is 2.}\]
Therefore, order is 3 and degree is 2. 
Hence, m = 3, n = 2
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 141]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 26 | Page 141

RELATED QUESTIONS

If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Solve the differential equation `dy/dx -y =e^x`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x2 + 1) dy + (2y − 1) dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + 2y = \sin 3x\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of differential equation coty dx = xdy is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×