हिंदी

If M and N Are the Order and Degree of the Differential Equation ( Y 2 ) 5 + 4 ( Y 2 ) 3 Y 3 + Y 3 = X 2 − 1 , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then

विकल्प

  • m = 3, n = 3

  • m = 3, n = 2

  • m = 3, n = 5

  • m = 3, n = 1

MCQ

उत्तर

m = 3, n = 2
 
We have,
\[ \left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\]
\[ \Rightarrow y_3 \left( y_2 \right)^5 + 4 \left( y_2 \right)^3 + \left( y_3 \right)^2 = y_3 \left( x^2 - 1 \right)\]
\[\text{ The highest order derivative is }y_3\text{ and its highest exponent in this equation is 2.}\]
Therefore, order is 3 and degree is 2. 
Hence, m = 3, n = 2
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 26 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the differential equation of all non-horizontal lines in a plane.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×