हिंदी

The Solution of the Differential Equation D Y D X + 1 = E X + Y , is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is

विकल्प

  • (x + y) ex + y = 0

  • (x + C) ex + y = 0

  • (x − C) ex + y = 1

  • (x − C) ex + y + 1 =0

MCQ

उत्तर

(x − C) ex + y + 1 = 0

 

We have, 
\[\frac{dy}{dx} + 1 = e^{x + y} \]
\[\text{ Let }x + y = v\]
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} + 1 = \frac{dv}{dx}\]
\[ \therefore \frac{dv}{dx} = e^v \]
\[ \Rightarrow e^{- v} dv = dx\]
Integrating both sides, we get
\[ - e^{- v} = x - C\]
\[ \Rightarrow - 1 = e^v \left( x - C \right)\]
\[ \Rightarrow \left( x - C \right) e^{x + y} + 1 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 27 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×