Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
उत्तर
Consider the differential equation,
`log(dy/dx)=3x+4y`
Taking exponent on both the sides, we have
`e^log(dy/dx)=e^(3x+4y)`
`=>dy/dx=e^(3x+4y)`
`=>dy/dx=e^(3x).e^(4y)`
`=>dy/(e^(4y))=e^(3x)dx`
Integration in both the sides, we have
`intdy/e^4y=inte^(3x)dx`
`e^(-4y)/(-4)=e^(3x)/3+C`
We need to find the particular solution.
We have, y=0, when x=0
`1/(-4)=1/3+C`
`=>C=-1/4-1/3`
`=>C=(-3-4)/12=-7/12`
Thus, the solution is `e^(3x)/3+e^(-4y)/4=7/12`
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
Which of the following differential equations has y = x as one of its particular solution?
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + y = 4x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.