हिंदी

Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.

उत्तर

Consider the differential equation,

`log(dy/dx)=3x+4y`

Taking exponent on both the sides, we have

`e^log(dy/dx)=e^(3x+4y)`

`=>dy/dx=e^(3x+4y)`

`=>dy/dx=e^(3x).e^(4y)`

`=>dy/(e^(4y))=e^(3x)dx`

Integration in both the sides, we have

`intdy/e^4y=inte^(3x)dx`

`e^(-4y)/(-4)=e^(3x)/3+C`

We need to find the particular solution.

We have, y=0, when x=0

`1/(-4)=1/3+C`

`=>C=-1/4-1/3`

`=>C=(-3-4)/12=-7/12`

Thus, the solution is `e^(3x)/3+e^(-4y)/4=7/12`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) All India Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


Which of the following differential equations has y = x as one of its particular solution?


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + y = 4x\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×