हिंदी

The general solution of ex cosy dx – ex siny dy = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of ex cosy dx – ex siny dy = 0 is ______.

विकल्प

  • ex cosy = k

  • ex siny = k

  • ex = k cosy

  • ex = k siny

MCQ
रिक्त स्थान भरें

उत्तर

The general solution of ex cosy dx – ex siny dy = 0 is ex cosy = k.

Explanation:

The given differential equation is ex cosy dx – ex siny dy = 0

⇒ ex (cosy dx – siny dy) = 0

⇒ cosy dx – siny dy = 0   ......[∵ ex ≠ 0]

⇒ siny dy = cosy dx

⇒ `siny/cosy "d"y` = dx

Integrating both sides, we have

`int siny/cosy "d"y = int "d"x`

⇒ `-log|cosy| = x + log "k"`

⇒ `log  1/cosy - log "k"` = x

⇒ `log(1/("k" cosy))` = x

⇒ `1/("k" cosy)` = ex

⇒ `1/"k"` = ex cosy

⇒  ex cosy = c  .....`["c" = 1/"k"]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 50 | पृष्ठ १९७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + y = 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×