हिंदी

Find the Particular Solution When X = 0 and Y = π. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.

उत्तर

3ex tanydx + (1 +ex) sec2 ydy = 0

Divide by tany(1+ex)

`(3e^x)/(1+e^x)dx+(sec^2y)/(tany)dy=0`

`int(3e^x)/(1+e^x)dx+int(sec^2y)/(tany)dy=0`

Put tan y = t

dt = sec2y

`3 log|1+e^x|+int1/tdt=c`

`3log|1+e^x|+log|t|=c`

`3log|1+e^x|+log|tany|=c ................(1)`

put x=0 and y=pi in (1)

`3log|1+e^0|+log|0|=c`

`3log|2|=c................(2)`

`3log|1+e^x|+log|tany|=3log|2| `

`3log|1+e^x|+log|tany|-3log|2|=0`

`3(log|1+e^x|-log|2|)+log|tany|=0`

`3log((1+e^x)/2)+log|tany|=0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×