Advertisements
Advertisements
प्रश्न
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
The given differential equation is `("d"y)/("d"x) = (y/x)^(1/3)`
⇒ `("d"y)/("d"x) = y^(1/3)/x^(1/3)`
⇒ `("d"y)/y^(1/3) = ("d"x)/x^(1/3)`
Integrating both sides, we get
`int ("d"y)/y^(1/3) = int ("d"x)/x^(1/3)`
⇒ `int y^(-1/3) "d"y = int x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3 + 1) + "c"`
⇒ `3/2 y^(2/3) = 3/2 x^(2/3) + "c"`
⇒ `y^(2/3) = x^(2/3) + 2/3 "c"`
⇒ `y^(2/3) - x^(2/3) = "k"["k" = 2/3 "c"]`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
If y = etan x+ (log x)tan x then find dy/dx
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
(x + y − 1) dy = (x + y) dx
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + y = 4x\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Which of the following differential equations has `y = x` as one of its particular solution?