Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
उत्तर
`dy/dx + sqrt((1 - y^2)/(1 - x^2)) = 0`
`=> dy/dx = - sqrt((1 - y^2)/(1 - x^2))`
`dy/sqrt(1 - y^2) + dx/sqrt(1 - x^2) = 0`
On integrating
sin-1 y + sin-1 x = C
which is the required solution.
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.