हिंदी

Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.

योग

उत्तर

We have, `dy/dx = (x^3 - 3xy^2)/(y^3 - 3x^2 y)`          ....(1)

Put y = vx

⇒ `dy/dx = v + x (dv)/dx`

∴ (1) become:

`v + x  (dv)/dx = (x^3 - 3x (v^2 x^2))/(v^3 x^3 - 3x^2 vx)`

`= (1 - 3v^2)/(v^3 - 3v)`

⇒ `x (dv)/dx = (1 - 3v^2)/(v^3 - 3v) - v`

`= (1 - 3v^2 - v^4 + 3v^2)/ (v^3 - 3v)`

`= (1 - v^4)/(v^3 - 3v)`

⇒ `(v^3 - 3v)/(1 - v^4)  dx = dx/x`

Integrating, `int (v^3 - 3v)/ (1 - v^4) dv = int dx/x + `constant    ....(2)

Now,

`I = int (v^3 - 3v)/ (1 - v^4)  dv`

`= int v^3/ (1 - v^4)  dv - 3 int v/ (1 - v^4)  dv`                 ....(3)

I = I1 - 3I2                             ....(4 )

Where `I = int v^3/(1 - v^4)  dv`

Put 1 - v4 = t

⇒ -4v3 dv = dt

⇒ `v^3 dv = -dt/4`

∴ `I_1 = int (-1/4  dt)/t`

`= 1/4 int 1/t dt = -1/4 log |t| + C_1`

`= -1/4 log |1 - v^4| + C_1`

And `I_2 - int v/ (1 - v^4)  dv`

Put v2 = T

⇒ 2v = dT

⇒ `vdv = (dT)/2`

∴ `I_2 = int (1/2 dT)/ (1 - T^2)`

`= 1/2 int (dT)/(1^2 - T^2)`

`= 1/(2(2)) log |(1 + T)/(1 - T)| + C_2`

`= 1/4 log |(1 + v^2)/ (1 - v^2) + C_2|`

∴ From (4), we get

`I = 1/4  log |1 - v^4|  -3/4  log |(1 +v^2)/(1 - v^2)| + C_1 + C_2`

From (2), we have

`- 1/4 log |1 - v^4| - 3/4  log |(1 + v^2)/ (1 - v^2)|= log |x| + log |C'|`

⇒ `-1/4 [log |1 - v^4| + 3 log |(1 + v^2)/(1 - v^2)|] = log |C'  x|`

⇒ `-1/4 [log |(1 - v^2) (1 + v^2) (1 + v^2)^3/(1 - v^2)^3|] = log |C'  x|`

⇒ `-1/4 [log |(1 + v^2)^4/(1 - v^2)^2|] = log |C'  x |`

⇒ `log | sqrt (1 - v^2)/ (1 + v^2)| = log |C'  x|`

⇒ `sqrt (1 - v^2)/ (1 + v^2) = C'  x`

⇒ `sqrt (1 - y^2/x^2)/(1 + y^2/x^2) = C'  x`

⇒ `sqrt (x^2 y^2) = C' (x^2 + y^2)`

Squaring on the both sides, we get

`x^2 - y^2 = C (x^2 + y^2)^2`  Where C'2 = C

Hence, x2 - y2 = C (x2 + y2)2 is the general solution. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.7 | Q 4 | पृष्ठ ४२०

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Which of the following is a homogeneous differential equation?


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×