Advertisements
Advertisements
प्रश्न
(x2 + 3xy + y2) dx − x2 dy = 0
उत्तर
We have,
\[ \left( x^2 + 3xy + y^2 \right) dx - x^2 dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + 3xy + y^2}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + 3v x^2 + v^2 x^2}{x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = 1 + 3v + v^2 - v\]
\[ \Rightarrow x\frac{dv}{dx} = 1 + v^2 + 2v\]
\[ \Rightarrow \frac{1}{1 + v^2 + 2v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + v^2 + 2v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{\left( 1 + v \right)^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{\left( 1 + v \right)} = \log \left| x \right| + C\]
\[ \Rightarrow \log \left| x \right| + \frac{1}{\left( 1 + v \right)} = - C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \therefore \log \left| x \right| + \frac{x}{\left( x + y \right)} = C_1 \]
where
\[ C_1 = - C\]
\[\text{ Hence, }\log \left| x \right| + \frac{x}{\left( x + y \right)} = C_1\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Which of the following is a homogeneous differential equation?
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)