Advertisements
Advertisements
प्रश्न
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
उत्तर
We have,
\[\left( x^2 - 2xy \right) dy + \left( x^2 - 3xy + 2 y^2 \right) dx = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 3xy + 2 y^2}{2xy - x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - 3v x^2 + 2 v^2 x^2}{2v x^2 - x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - 3v + 2 v^2}{2v - 1}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 3v + 2 v^2}{2v - 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2v}{2v - 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - 1\]
\[ \Rightarrow dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow v = - \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \frac{y}{x} = - \log \left| x \right| + C\]
\[ \Rightarrow \frac{y}{x} + \log \left| x \right| = C\]
\[\text{ Hence, }\frac{y}{x} + \log \left| x \right| = C\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx