हिंदी

Solve the Differential Equation: D Y D X = X + Y X − Y - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`

योग

उत्तर

The given differential equation is:

⇒ `dy/dx = (x + y)/( x - y)`           ....(1)

Let F (x, y) = `(x + y)/( x - y)`

∴ F ( λx, λy) = `(λx + λy)/( λx - λy) = (x + y)/( x - y) = λ° . F(x, y)`  

Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as: y = vx
⇒ `d/dx (y) = d/dx (vx)`

⇒ `dy/dx = v + x (dv)/dx`

Substituting the values of y and in equation (1), we get:

`v + x (dv)/(dx) = (x + vx)/(x - vx) = (1 + v)/(1 - v)`

⇒ `x (dv)/(dx) = (1 + v)/(1 - v) - v = (1 + v - v( 1 - v))/( 1 - v)`

⇒ `x (dv)/(dx) = (1 + v^2)/(1 - v)`

⇒ `(1 - v)/(1 + v^2) (dv) = (dx)/x`

Integrating both sides, we get:

`tan^-1v - 1/2 log ( 1 + y^2 ) = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log [ 1 + (y/x)^2 ] = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log ((x^2 + y^2)/x^2) = log x + c`

⇒ `tan^-1 (y/x) - 1/2 [ log ((x^2 + y^2)- log x^2) ] = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log (x^2 + y^2) + c`

This is the required solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×