हिंदी

Show that the given differential equation is homogeneous and solve them. y dx+xlog(yx)dy-2x dy=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`

योग

उत्तर

`y  dx + x log (y/x)  dy - 2x  dy = 0`

⇒ `y/x + log (y/x) dy/dx - 2 dy/dx = 0`

⇒ `dy/dx = (y/x)/(2 - log (y/x))`           .....(1)

Since R.H.S. is of the form `g(y/x)`, it is a homogeneous function of degree zero.

Therefore equation (1) is a homogeneous differential equation.

To solve this, put y = vx

 ⇒ `dy/dx = v + x (dv)/dx,` then (1) becomes

`v + x (dv)/dx = v/ (2 - log v)`

⇒ `x (dv)/dx = v/ (2 - log v) - v`

⇒ `((2 - log v)dv)/(v log v - v) = dx/x`

⇒ `(1 - (log v - 1))/(v (log v - 1)) dv = dx/x`            .....(2)

Integrating (2) both sides, we get

`int (1/ (v (logv - 1)) - 1/v)  dv`

`= int dx/x + C_1`

⇒ `int (1/v)/(log v - 1) dv - int 1/v  dv = int dx /x + C_1`

⇒ `log |log v - 1| - log |v|`

= log |x| + C1

⇒ `log |(log v - 1)/(v  x)| = C_1`

⇒ `|(log v - 1)/ (v  x)| = e^(C_(1))`

⇒ `(log v - 1)/(v  x) = pm  e^(C_(1)) = C`    (say)

 ⇒ `log (y/x) - 1 = Cy`                   ...`(∵ v = y/x)`

which is the required general solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.5 | Q 9 | पृष्ठ ४०६

संबंधित प्रश्न

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


(x2 + 3xy + y2) dx − x2 dy = 0


(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×