Advertisements
Advertisements
प्रश्न
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
उत्तर
`y dx + x log (y/x) dy - 2x dy = 0`
⇒ `y/x + log (y/x) dy/dx - 2 dy/dx = 0`
⇒ `dy/dx = (y/x)/(2 - log (y/x))` .....(1)
Since R.H.S. is of the form `g(y/x)`, it is a homogeneous function of degree zero.
Therefore equation (1) is a homogeneous differential equation.
To solve this, put y = vx
⇒ `dy/dx = v + x (dv)/dx,` then (1) becomes
`v + x (dv)/dx = v/ (2 - log v)`
⇒ `x (dv)/dx = v/ (2 - log v) - v`
⇒ `((2 - log v)dv)/(v log v - v) = dx/x`
⇒ `(1 - (log v - 1))/(v (log v - 1)) dv = dx/x` .....(2)
Integrating (2) both sides, we get
`int (1/ (v (logv - 1)) - 1/v) dv`
`= int dx/x + C_1`
⇒ `int (1/v)/(log v - 1) dv - int 1/v dv = int dx /x + C_1`
⇒ `log |log v - 1| - log |v|`
= log |x| + C1
⇒ `log |(log v - 1)/(v x)| = C_1`
⇒ `|(log v - 1)/ (v x)| = e^(C_(1))`
⇒ `(log v - 1)/(v x) = pm e^(C_(1)) = C` (say)
⇒ `log (y/x) - 1 = Cy` ...`(∵ v = y/x)`
which is the required general solution.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(x2 + 3xy + y2) dx − x2 dy = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)