हिंदी

For the differential equation find a particular solution satisfying the given condition: (x + y) dy + (x – y) dx = 0; y = 1 when x = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1

योग

उत्तर

given (x + y) dy + (x – y) dx = 0

`=> dy/dx = (y - x)/(y + x)`   ...(i)

∵ The powers of the numerator and denominator are the same so this is a homogeneous differential equation.

∴ Putting y = vx 

`dy/dx = v + x (dv)/dx`   ...(in equation (i))

`=> v + x (dv)/dx = (vx - x)/(vx + x)`

`=> x (dv)/dx = (v - 1)/(v + 1) - v`

`x (dv)/dx = (v - 1 - v^2 - 1)/(v + 1)`

`= - (v^2 + 1)/(v + 1)`

`(v + 1)/(v^2 + 1)dv = - 1/x  dx`

On integrating,

`=> 1/2 int (2v)/(v^2 + 1)dv + int 1/(v^2 + 1) dv = - int 1/x dx`

`1/2 log (v^2 + 1) + tan^-1 (v) = - log x + C`

log (v2 + 1) + 2 tan-1 (v) = - 2 log x + 2C

So on putting `y/x` in place of v,

`log ((y^2 + x^2)/x^2) + 2 tan^-1 (y/x) = - log x^2 + 2C`

`log (x^2 + y^2) - log x^2 + 2 tan^-1 (y/x) = - log x^2 x + 2C`

`log (x^2 + y^2) + 2 tan^-1 (y/x) = 2C`    ....(ii)

Given y = 1 and x = 1

log (12 + 12) + 2 tan-1 (1) = 2C

log 2 + 2 tan-1 (1) = 2C

2C = log 2 + 2 `xx pi/4 = log 2 + pi/2`

Putting this value of C in equation (ii),

`log (x^2 + y^2) + 2 tan^-1 (y/x) = pi/2 + log 2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.5 [पृष्ठ ४०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.5 | Q 11 | पृष्ठ ४०६

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×