Advertisements
Advertisements
प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
उत्तर
The given differential equation can be written as
`dx/dy=(2xe^(x/y)-y)/(2ye^(x/y)) .....................(1)`
`Let F(x,y)=(2xe^(x/y)-y)/(2ye^(x/y))`
then ` F(lambdax,lambday)=(lambda(2xe^(x/y)-y))/(lambda(2ye^(x/y)))=lambda^@[F(x,y)]`
Thus, F (x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation.
For solving, let us substitute x=vy ..................(2)
Differentiating equation (2) with respect to y, we get
`dx/dy=v+y(dv)/(dy)`
Substituting the value of x and `dx/dy ` in equation (1), we get
`v+y(dv)/(dy)=(2ve^v-1)/(2e^v)`
`or y(dv)/(dy)=(2ve^v-1)/(2e^v)-v`
`or y(dv)/(dy)=-1/(2e^v)`
`or 2e^vdv=(-dy)/y`
`or int 2e^vdv=-intdy/y`
`or 2e^v=-log|y|+C`
Replacing v by x/y , we get
`2e^(x/y)+log|y|=c......(3)`
Substituting x = 0 and y = 1in equation (3), we get
`2e^0+log|1|=c =>c=2`
Substituting the value of C in equation (3), we get
`2e^(x/y)+log|y|=2` .which is the particular solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)