हिंदी

Solve the Following Initial Value Problem: D Y D X = Y ( X + 2 Y ) X ( 2 X + Y ) , Y ( 1 ) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 

योग

उत्तर

\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 1\]
This is an homogenous equation,
Put `y = vx`
\[\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\Rightarrow v + x\frac{dv}{dx} = \frac{v\left( x + 2vx \right)}{\left( 2x + vx \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v\left( 1 + 2v \right)}{\left( 2 + v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v\left( 1 + 2v \right) - v\left( 2 + v \right)}{\left( 2 + v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v + 2 v^2 - 2v - v^2}{\left( 2 + v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 - v}{\left( 2 + v \right)}\]
\[ \Rightarrow \frac{\left( 2 + v \right)dv}{\left( v^2 - v \right)} = \frac{dx}{x}\]
On integrating both side of the equation we get,
\[\int\frac{2 + v}{\left( v^2 - v \right)}dv = \int\frac{dx}{x}\]
\[ \Rightarrow \int\frac{2}{v\left( v - 1 \right)}dv + \int\frac{v}{v\left( v - 1 \right)}dv = \int\frac{dx}{x}\]
\[ \Rightarrow 2\left[ \int\frac{1}{\left( 1 - v \right)}dv - \int\frac{1}{v}dv \right] + \int\frac{1}{v - 1}dv = \log_e x + c\]
\[ \Rightarrow 2\left[ \log_e \left( v - 1 \right) - \log_e v \right] + \log_e \left( v - 1 \right) = \log_e x + c\]
\[2\left[ \log_e \left( \frac{v - 1}{v} \right) \right] + \log_e \left( v - 1 \right) = \log_e x + c\]
\[2 \log_e \left( \frac{y - x}{y} \right) + \log_e \left( \frac{y - x}{x} \right) = \log_e x + c\]
As `y(1) = 2`
\[2 \log_e \left( \frac{2 - 1}{2} \right) + \log_e \left( \frac{2 - 1}{1} \right) = \log_e 1 + c\]
\[2 \log_e \frac{1}{2} + \log_e 1 = \log_e 1 + c\]
\[ - 2 \log_e 2 + 0 = 0 + c\]
\[ - 2 \log_e 2 = c\]
\[ \therefore 2 \log_e \left( \frac{y - x}{y} \right) + \log_e \left( \frac{y - x}{x} \right) = \log_e x - 2 \log_e 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 36.5 | पृष्ठ ८४

संबंधित प्रश्न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×