Advertisements
Advertisements
प्रश्न
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
उत्तर
Given equation can be written as xdy = `(sqrt(x^2 + y^2) + y) "d"x`
i.e., `"dy"/"dx" = (sqrt(x^2 + y^2) + y)/x` ......(1)
Clearly R.H.S of (1) is a homogeneous function of degree zero.
Therefore, the given equation is a homogeneous differential equation.
Substituting y = vx, we get from (1)
`"v" + x "dv"/"dx" = (sqrt(x^2 + "v"^2 + x^2) + vx)/x`
i.e. `"v" + x "dv"/"dx" = sqrt(1 + "v"^2) + "v"`
`x "dv"/"dx" = sqrt(1 + "v"^2)`
⇒ `"dv"/sqrt(1 + "v"^2) = "dx"/x` ......(2)
Integrating both sides of (2), we get
`log("v" + sqrt(1 + "v"^2))` = logx + logc
⇒ `"v" + sqrt(1 + "v"^2)` = cx
⇒ `y/x + sqrt(1 + y^2/x^2)` = cx
⇒ `y + sqrt(x^2 + y^2)` = cx2
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Which of the following is a homogeneous differential equation?
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)