Advertisements
Advertisements
प्रश्न
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
उत्तर
Given equation can be written as xdy = `(sqrt(x^2 + y^2) + y) "d"x`
i.e., `"dy"/"dx" = (sqrt(x^2 + y^2) + y)/x` ......(1)
Clearly R.H.S of (1) is a homogeneous function of degree zero.
Therefore, the given equation is a homogeneous differential equation.
Substituting y = vx, we get from (1)
`"v" + x "dv"/"dx" = (sqrt(x^2 + "v"^2 + x^2) + vx)/x`
i.e. `"v" + x "dv"/"dx" = sqrt(1 + "v"^2) + "v"`
`x "dv"/"dx" = sqrt(1 + "v"^2)`
⇒ `"dv"/sqrt(1 + "v"^2) = "dx"/x` ......(2)
Integrating both sides of (2), we get
`log("v" + sqrt(1 + "v"^2))` = logx + logc
⇒ `"v" + sqrt(1 + "v"^2)` = cx
⇒ `y/x + sqrt(1 + y^2/x^2)` = cx
⇒ `y + sqrt(x^2 + y^2)` = cx2
APPEARS IN
संबंधित प्रश्न
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)