Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
उत्तर
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y(2) = \pi\]
It is a homogeneous equation . put y = vx
\[\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ so,} v + x\frac{dv}{dx} = \frac{vx}{x} - \sin\left( \frac{vx}{x} \right)\]
\[x\frac{dv}{dx} = - \sin v\]
\[\frac{dv}{\sin v} = - \frac{dx}{x}\]
\[\text{ cosec }(v)dv = - \frac{dx}{x}\]
Integraing both sides we get,
\[\log(\text{cosec }(v) - cot(v)) = - \log x + \log c\]
\[log\left( \text{cosec }\left( \frac{y}{x} \right) - cot\left( \frac{y}{x} \right) \right) = - log x + log c\]
\[\text{Putting the values }x = 2\text{ and }y = \pi \]
\[log\left(\text{cosec }\left( \frac{\pi}{2} \right) - cot\left( \frac{\pi}{2} \right) \right) = - log 2 + log c\]
\[c = 0\]
\[log\left( \text{cosec }\left( \frac{y}{x} \right) - cot\left( \frac{y}{x} \right) \right) = - log x\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx